

BHBIA RFP
ASSETS

A Technical Audit and subsequent workshop report and
recommendations for the rebuild of the BHBIA website

Adam Prentice

Darkish Ltd.

BHBIA Workshop Report 1

Table of Contents
Table of Contents..1

1. Executive Summary ...3

1.1 Overview ... 3

1.2 Key Issues Identified ... 3

1.3 Scope of the Audit .. 4

1.4 Recommendation ... 4

2. High-Level Business Objectives ..5

3. Existing System ...6

3.1 Description... 6

3.2 Technical Stack ... 6

3.3 Main Sections & Features ... 8

4. Technical Audit Findings .. 11

4.1 Code Quality .. 11

4.2 Reporting System ... 11

4.3 Error Handling & Logging .. 12

4.4 Architecture ... 12

4.5 Performance .. 13

4.6 Testing ... 15

4.7 Dependencies... 16

4.8 Database .. 18

4.9 Documentation .. 19

4.10 Security .. 20

4.11 Administration Panel – Risk of Unrestricted Access.. 21

4.12 Stripe Integration & Pricing Risks .. 21

5. Redevelopment Strategy ... 22

5.1 Rebuild vs Refactoring .. 22

5.2 Data Migration Strategy ... 22

5.3 Feature Prioritization & Rationalization .. 23

5.4 Payments & Financial Handling ... 23

5.5 Development & Implementation Strategy ... 24

5.6 Testing & Launch .. 24

5.7 Post-launch & Continuous Improvement ... 24

6. Recommendations .. 25

6.1 UX review .. 25

BHBIA Workshop Report 2

6.2 Content, CMS & Administration .. 26

6.3 Technical Approach .. 27

6.4 Payment Integration & Financial Handling .. 28

6.5 User Management .. 28

6.6 Security & Compliance .. 29

6.7 Campaign and Marketing .. 29

6.8 Deployment and Go Live ... 29

7. Risks & Mitigations ... 30

7.1 Data Migration Complexity and Integrity Issues .. 30

7.2 Inadequate Security Measures .. 30

7.3 Overly Flexible Requirements ... 30

7.4 Payment Integration and Financial Automation Challenges ... 31

7.5 Performance Issues During Peak Periods ... 31

8. Appendix .. 32

8.1 Security Audit report .. 32

8.2 Workshop Whiteboard Outputs .. 33

BHBIA Workshop Report 3

1. Executive Summary

1.1 Overview
This report summarises the outcomes from the Technical Audit and subsequent
Requirements Gathering Workshop conducted for the BHBIA website. The audit assessed
the current state of the system, identifying critical issues in areas such as technology stack,
security, performance, and administrative workflows. The workshop further clarified the
business requirements, highlighting areas needing significant improvement.

1.2 Key Issues Identified
Outdated & Unsupported Technologies
The current system is built on technologies no longer supported, which pose severe security
risks and compatibility challenges, making maintenance difficult.

Security Vulnerabilities
Significant vulnerabilities were identified, including SQL injection risks and Cross-Site
Scripting (XSS). Additionally, essential security headers (e.g., CSP) are missing, increasing
susceptibility to attacks.

Administrative Complexity
Current administrative processes are predominantly manual, complex, and time-consuming,
particularly regarding payments, event management, and reporting. The admin area’s
performance is notably poor during busy periods.

Performance & User Experience Issues
General site performance suffers from inefficient caching, slow load times (especially during
renewal periods), and poor content optimisation (e.g., large images, layout shifts, render-
blocking scripts).

Limited Payment & Financial Automation
Financial processes are fragmented, with manual invoicing, limited automation for debt
collection, no integrated VAT handling, and no direct export functionality for accounting
software (Sage).

Reporting Inefficiencies
The reporting system relies heavily on manually created templates and lacks flexibility.
Reports cannot cover multiple database tables simultaneously, making data extraction and
auditing cumbersome. Historical data is not shown on the site, and so reports are utilised to
manually store the data for future use.

Administrative Complexity & Technical Debt
The administration area lacks efficient workflows, suffers from duplication of content, and is
heavily reliant on manual intervention for updates, reporting, and payment management.
Document management is inefficient and causes issues when needing to reuse documents
and images across the site.

BHBIA Workshop Report 4

1.3 Scope of the Audit
The audit encompassed a thorough review of the provided codebase, including:

• Application Code: Evaluation of coding standards, maintainability, scalability, and
security.

• Architecture & Design: Assessment of the overall system design, modularity, and
adherence to best practices.

• Database Design: Review of schema structure, indexing, query efficiency, and data
integrity.

• System Performance: Identification of bottlenecks and areas for optimization.

• Security Considerations: Examination of potential vulnerabilities and adherence to
security best practices.

• Website Functionality: A hands-on review of the live website to assess usability,
responsiveness, and any observable performance or security issues.

• Admin Panel Review: Analysis of the administrative interface to identify
inefficiencies, usability concerns, and areas for workflow improvement.

1.4 Recommendation
A full rebuild of the website is recommended to address these issues effectively. The new
build should employ modern technologies, significantly enhancing security, performance,
and usability. Centralising payment management through Stripe and simplifying content
administration via structured CMS templates are crucial recommendations.

BHBIA Workshop Report 5

2. High-Level Business Objectives
The following objectives have been defined to guide the redevelopment of the website:

Streamlined User Experience (UX)
Improve overall user journeys, simplify registration and renewal processes, and facilitate
better content discovery and site interaction.

Simplified Administration
Reduce manual administration tasks through improved workflows, intuitive interfaces, and
automation.

Enhanced Security and Performance
Address identified security vulnerabilities, improve site performance, especially during busy
periods (renewal times), and ensure best practices in data security and compliance.

Improved Payment Automation and Financial Handling
Centralise and automate invoicing, payment handling, debtor management, and integrate
with accounting software through Stripe.

Efficient Content Management and Administration
Implement a CMS with structured templates to simplify content management, improve ease
of use for administrators, and reduce complexity.

Improved Marketing and Engagement Strategies
Utilising Customer Segmentation, recommendations and improved CTAs to encourage
continued engagement with the site

BHBIA Workshop Report 6

3. Existing System

3.1 Description
The current system is built using Statamic, a flat-file content management system (CMS)
that runs on the Laravel framework, utilizing the PHP programming language. A MySQL
database is used for data storage, and Redis is used for caching and session management.

While the exact age of the system is unconfirmed, several indicators suggest that it has been
in operation for at least seven years without significant maintenance. This conclusion is
based on observed legacy coding practices, outdated framework versions, and
dependencies that are no longer supported. The system contains data dating back to 2009,
but it is unclear whether this data was migrated from a previous system or originated within
the current implementation. Therefore, this data cannot be used as a definitive indicator of
the system’s age.

The codebase is large and highly customized, extending beyond a typical CMS
implementation. Rather than being a standard Statamic-based website, it is more accurately
described as a custom web application built on top of Statamic, incorporating significant
bespoke functionality.

It has been confirmed by the previous developer that the site has not been updated due to
compatibility issues with newer versions of Statamic and Laravel. Updating to a more recent
version would require a substantial rewrite of the system’s core functionality, making
incremental updates impractical. As a result, the application is currently running on end-of-
life software versions, posing significant risks:

• Security vulnerabilities: Older versions of Laravel, Statamic, and PHP no longer
receive security patches, making the system susceptible to exploits.

• Compatibility issues: Newer third-party dependencies, libraries, and hosting
environments may not support outdated versions, limiting maintainability.

• Performance limitations: Modern PHP and Laravel versions provide significant
performance improvements that are unavailable in the current system.

• Long-term sustainability: As technology continues to evolve, reliance on outdated
software will make future upgrades and integrations increasingly difficult.

A more detailed analysis of these risks and their implications is provided in the Audit
Findings section under Dependencies.

3.2 Technical Stack
The following technologies are used in the current system:

Category Technology Notes & Considerations
Framework & CMS Laravel / Statamic V2 Statamic V2 is built on Laravel 5.x,

both of which are outdated and no
longer actively supported. Significant
custom functionality has been built
on top of the CMS. Upgrading to a

BHBIA Workshop Report 7

newer version would require
substantial redevelopment.

Programming Language PHP 7.1 PHP 7.1 reached end-of-life in
December 2019, meaning it no longer
receives security updates. Running
unsupported versions presents
security risks and limits compatibility
with modern libraries.

Database MySQL 5.7 End-of-life as of October 2023. Future
hosting environments may not
support it, and performance/security
optimizations in newer MySQL
versions are unavailable.

Templating Engine Antlers Statamic’s proprietary templating
engine. Offers some benefits in terms
of flexibility but can limit portability if
migrating away from Statamic.

Containerization Docker Used for local development or
deployment. If properly configured, it
simplifies environment consistency
but adds an extra layer of complexity
in maintenance.

Caching & Sessions Redis Used for caching and session
management. This is an appropriate
choice for improving performance but
requires ongoing monitoring to
prevent excessive memory usage.

Hosting Provider Digital Ocean The application is currently hosted on
Digital Ocean, a flexible but self-
managed cloud provider. While cost-
effective, it lacks the managed
services of platforms like AWS or
Azure, requiring more administrative
oversight.

Asset Storage Git (Version Control) Due to Statamic’s flat-file nature,
assets are stored in Git and on the
server rather than in cloud storage.
This can lead to scalability issues as
asset volumes grow.

Deployment & CI/CD Laravel Forge Used for managing deployments.
Developer documentation suggests
that deployments are automated,
reducing the risk of manual errors.
However, it is unclear if rollback
strategies or environment-specific
configurations are implemented.

Live Changes Sync Statamic Plugin Used to sync live environment
changes back to the repository. This
suggests some workflows involve
direct changes to production, which
can introduce risks if not properly
managed.

Transactional Email Mandrill Used for sending system-generated
emails. Mandrill is an add-on for
Mailchimp and may require a
Mailchimp account for continued use.
Alternative providers such as
Postmark or Amazon SES could offer
more flexibility.

Payment Processing Stripe Used for processing online payments.
Stripe is a robust and widely used
solution, but ongoing updates to API

BHBIA Workshop Report 8

versions should be monitored to
avoid compatibility issues.

Marketing Email Campaign Monitor Used for marketing email campaigns.
Integration should be reviewed to
ensure compliance with GDPR and
other relevant data protection
regulations.

3.3 Main Sections & Features
The system consists of several key sections, each providing distinct functionalities tailored to
administrators, members, and the public. These sections range from content management
(CMS) features to e-commerce capabilities, event management, training modules, and
membership-based access.

Administration & CMS

The platform includes an administration section that is accessible only to users with
Administrator status. This section provides a range of management features, including:

• Content Management System (CMS): Allows administrators to create and manage
collections such as Events, Online Training, and creating and amending individual
pages.

• User & Organization Management: Administrators can manage members and
organizations, granting permissions and overseeing memberships.

• Report Generation: A built-in reporting system enables data extraction, though it is
limited in scope:

o Reports can only be generated on a single database table at a time.
o Reports require the creation of a template before generating a report.
o Due to this workflow, many templates have accumulated, often with only

slight variations between them.

CMS-Driven Pages

The website includes multiple pages that are managed through the CMS:

• Flexible Content Pages: Most pages (e.g., About, Resources, News) allow for flexible
page-building through a CMS-based editor.

• Custom Templates: Some pages utilize predefined templates, such as Committee &
Board Members and BOBI Awards

• Collection-Based Pages: Sections such as Events, Online Training, and News are
dynamically built from content collections stored within the CMS.

Online Training

The system provides an online training platform that allows members to purchase and
complete courses. Training modules are fully managed within the system using a custom
implementation.

• Course Structure: Each training module consists of individually created slides and
questions, which are then associated with a specific course.

• Purchasing & Access:

BHBIA Workshop Report 9

o Once purchased, training content remains accessible until it is manually
deleted from the CMS.

o If a course is marked as “Draft” or hidden, it is still available to users who
previously purchased it.

• Lack of Historical Tracking:
o No version history is maintained for courses or questions.
o If an administrator updates a course or modifies quiz questions, all users—

including those who have already completed the training—will see the latest
version. This could create inconsistencies in certification records.

• Certification Expiry: Certifications expire annually on October 31st.

Events

The platform allows members to purchase and book onto events. Events include a range of
customizable settings:

• Event Customization: Events can be configured with custom pricing, delegate limits
(for different member categories such as Agency and Industry), and multiple ticket
types.

• Calendar Integration: The system can generate an ICS file for users to download,
allowing them to add the event to their calendar.

• Email Customization: Administrators can define the email content that gets sent to
registered delegates.

• Webinar Access:
o A webinar link must be included in the email content for attendees to access

online events.
o There is no direct mechanism for accessing a webinar through the website

itself.

• Event Duplication:
o While template-based or recurring events are not supported, an existing

event can be duplicated to create a new one.

BOBI Awards

The BOBI Awards section allows members to submit applications for awards. The system
provides:

• A publicly accessible list of available awards.

• The ability to sponsor awards.

• Submission Process:
o Applications are handled externally through SmartSurvey rather than within

the system.
o Previous winners are manually added to the website each year.

Job Board

The system includes a job board feature where members can post job vacancies. However,
usage appears to be low. Only 6 job listings were submitted in 2024 and 10 in 2023. It is
unclear if the restrictions on who can post jobs or usability limitations are the cause of the
low engagements. Job Boards are hidden in a dropdown on the menu, and so it’s likely it’s
not frequently accessed by users.

BHBIA Workshop Report 10

Members Directory

The platform includes a member’s directory that lists member companies. Paid members
gain access to contact details of companies, while non-members have restricted visibility.

Member Profile

Each member has a profile page, which serves as a central hub for accessing their purchased
content and historical activity. From here, the member can access their stored content, such
as Training they’ve completed, Events they’ve attended and Job’s they’ve submitted.

BHBIA Workshop Report 11

4. Technical Audit Findings

4.1 Code Quality
The overall code quality of the application presents several challenges, primarily due to
legacy practices, inconsistent standards, and a lack of maintainability. While the core
structure of the system is functional, the presence of hardcoded values, duplicated logic,
inconsistent naming conventions, and outdated models contributes to technical debt.

One of the most significant issues is the use of hardcoded values throughout the application.
This is particularly evident in the Access Middleware, where URLs are embedded directly
within the code, reducing flexibility and increasing the difficulty of making environment-
based configuration changes. Hardcoded email subject lines also limit adaptability, making it
challenging to modify messaging dynamically without altering the codebase. To enhance
maintainability, these values should be extracted into configurable parameters within
environment files, a dedicated settings module or directly within the CMS, depending on the
amount of flexibility required.

The organization of files follows expected conventions for Laravel and Statamic, with core
functionalities such as the CMS, Theme, and custom implementations in add-on’s. However,
some areas lack a clear organizational pattern, making it difficult for developers to navigate
the system efficiently. Additionally, there is duplication of code across multiple models. For
example, similar logic for calculating payment types, costs, and Stripe URLs appears in
multiple models, including JobVacancy, EventBooking, AdvertisingRequest, and
CoursePurchase. A more structured approach using base model classes would help to
reduce redundant code and improve maintainability.

There are also inconsistencies in date handling, where different database entities store and
format dates in varying ways. Naming conventions also lack uniformity, with some fields
using camelCase (e.g., createdBy, submittedBy) while others follow snake_case (created_by,
submitted_by). These inconsistencies make it harder to maintain the codebase and
introduce unnecessary complexity when querying the database. A more standardized
approach to naming and date formatting should be enforced across the application.

A mixture of legacy and modern models is another concern, as older parts of the system still
follow outdated Laravel conventions while newer components adhere to modern best
practices. This inconsistency creates confusion for developers working across different parts
of the application and complicates maintenance efforts.

4.2 Reporting System
The application’s reporting system is well-structured, with reports inheriting from a base
class and providing a standardized mechanism for data extraction. However, reports rely on
hardcoded SQL statements, which, while functional, reduce maintainability compared to an
ORM-based approach. Although this issue is not user-facing, transitioning to using the ORM
would provide greater flexibility and security.

BHBIA Workshop Report 12

Another issue is the lack of data versioning in reports. Currently, reports do not maintain
historical snapshots, meaning that once data changes, previous reports become inaccurate
and irreproducible. This could pose challenges for auditing and long-term reporting needs.
Implementing archived reports or a versioned reporting system would provide better data
integrity and traceability.

Additionally, error handling within reports is minimal. There is little validation on database
joins, meaning that incorrectly structured queries may fail silently rather than returning
meaningful errors. Similarly, the report formatters do not include robust error handling,
making debugging difficult if issues arise. Enhancing validation and logging within the
reporting system would improve reliability.

4.3 Error Handling & Logging
The error handling throughout the application is limited, making it difficult to diagnose and
troubleshoot issues. Many error-handling routines simply return a Boolean value (true or
false) instead of logging meaningful error messages. This practice prevents developers from
identifying the underlying causes of failures and increases debugging time.

There is also a tendency for the code to follow a “happy path” mentality, meaning that it
assumes operations will succeed without adequately handling failure cases. While some
exceptions are caught within try/catch blocks, they often fail to return actionable error
messages, further complicating debugging.

Logging is another area of concern, as many parts of the system do not log errors in a
structured way. Without a central logging mechanism, tracking issues across different
components becomes challenging. Implementing Laravel’s built-in logging system or
integrating third-party services such as Logstash, Papertrail, or Datadog would significantly
improve error traceability.

4.4 Architecture
The application follows a standard Statamic architecture built on the Laravel framework,
utilizing the Model-View-Controller (MVC) pattern. Overall, the system architecture adheres
to industry best practices in several areas, particularly in its use of asynchronous processing,
containerization, and external payment handling. However, some architectural choices,
while functional, may require further evaluation to ensure long-term scalability and
maintainability.

Asynchronous Processing with Command Handlers

The system employs a command handler structure to manage certain processes
asynchronously. This is primarily used for:

• Sending emails

• Processing subscriptions in Campaign Monitor

• Generating reports

By handling these operations asynchronously, the system reduces user-facing delays and
improves responsiveness. Instead of processing these tasks in real time within the main

BHBIA Workshop Report 13

application thread, they are executed in the background, allowing users to continue their
interactions without disruption. This architecture aligns with best practices for scalability
and performance optimization, ensuring that resource-intensive tasks do not impact real-
time interactions.

External Payment Handling via Stripe

Payments within the system are processed externally through Stripe, rather than being
handled within the application itself. This approach ensures that:

• Encryption and security compliance are handled by Stripe, reducing the burden of
managing PCI-DSS compliance internally.

• Payment complexity is minimized, as sensitive payment information does not need
to be stored within the application.

This is a recommended best practice for handling payments, as it offloads security and
compliance concerns to Stripe, a trusted third-party payment processor. However, it was
not possible to verify whether the system properly synchronizes payment statuses with
Stripe in real time. If payments are managed through webhooks, it is essential to ensure
error handling and logging are in place to prevent discrepancies in payment statuses.

Containerization with Docker

The application utilizes Docker for containerization, which benefits both developer setup
and hosting environments. Docker provides:

• Consistent development environments across different machines.

• Simplified dependency management, reducing the risk of “it works on my machine”
issues.

• Easier deployment to cloud environments and scalability through container
orchestration tools.

4.5 Performance
A series of performance tests were conducted to assess the responsiveness, efficiency, and
adherence to SEO best practices across various pages of the site. Overall, the system
demonstrates strong compliance with SEO and general best practices, achieving high scores
in key performance evaluations. However, several underlying issues affect loading times,
resource efficiency, caching strategies, and accessibility, which should be addressed to
enhance user experience and system efficiency.

General Performance Issues

While no single page exhibits extreme performance degradation, several site-wide
inefficiencies impact load times and user experience. One of the primary concerns is the
loading of render-blocking resources on every page, including external services such as
Stripe and Osano. These resources introduce delays even when they are not required on the
current page.

BHBIA Workshop Report 14

For example, Stripe has been observed to take up to 2 seconds to load on a page when
accessed for the first time by a user. As Stripe is only necessary on specific transactional
pages (e.g. checkout), forcing users to download and initialize these resources on the
homepage or other non-transactional pages results in unnecessary overhead. A more
optimized approach would involve lazy loading these scripts only when required rather than
including them globally.

Image Optimization & Layout Stability

Little to no image optimization appears to be in place across the site. This results in larger-
than-necessary image files, increasing page load times. Implementing proper compression
techniques (e.g., WebP format, lazy loading, and responsive image scaling) would improve
loading speeds significantly.

Another issue identified is layout shifts, where content loads progressively and changes the
visual structure of the page after it has started rendering. This is caused by elements loading
dynamically without predefined dimensions, leading to a disruptive experience for users.
Layout shifts negatively affect both user experience and SEO rankings, and can be mitigated
by:

• Ensuring all dynamically loaded elements have explicit height and width attributes.

• Using CSS aspect ratios to prevent shifts when images load.

• Applying lazy loading where appropriate to balance performance and visual stability.

Caching Strategy for Static Content

The site employs an inefficient caching policy for static assets, including JavaScript, CSS, and
font files. Instead of leveraging long-term caching to reduce redundant downloads, these
files are frequently reloaded, increasing bandwidth usage and slowing down repeat visits.

To optimize performance, the system should implement better cache-control policies,
ensuring that static assets are:

• Cached for longer durations in the user’s browser.

• Served via a Content Delivery Network (CDN) to improve load times and reduce
server requests.

• Versioned properly to ensure that updates are reflected without forcing unnecessary
downloads of unchanged files.

Accessibility & Usability Considerations

The system demonstrates good overall accessibility, but several issues have been identified
that may impact usability for individuals relying on assistive technologies. While a full
accessibility audit was not conducted, preliminary testing revealed areas where
improvements are needed.

One of the most notable concerns is form elements lacking associated labels. This omission
can make it difficult for users relying on screen readers to understand the purpose of input
fields. Additionally, some heading elements are not used in a sequential order, which can
disrupt navigation for screen readers and impact page structure clarity.

BHBIA Workshop Report 15

Another significant accessibility issue relates to keyboard navigation, particularly in the site’s
navigation bar. When navigating using the Tab key, the current behaviour does not:

• Follow a logical sequence when interacting with dropdown menus. Instead of
opening the dropdown and moving through its visible elements, the focus skips
through all hidden items.

• Provide clear visual indicators when a user navigates to the navbar. This means a
keyboard user may not realize they are interacting with the menu, leading to
confusion and difficulty in site navigation.

4.6 Testing
Testing within the application is extremely limited, with minimal test coverage focusing only
on specific services. Key components such as controllers, models, and command handlers
are entirely untested, and no feature, integration, or API tests are in place. This lack of
comprehensive testing introduces significant risks in terms of maintainability, stability, and
the ability to detect regressions before deployment.

Current State of Testing

The existing test coverage is confined to a small subset of service-level tests, primarily
covering:

• Duplicate email prevention

• Setting areas of interest

• Organization creation and relationships

While these tests provide some validation for specific business logic, they are not sufficient
to ensure the stability of the overall application. Additionally, test data is hardcoded, which
results in brittle tests that may fail when underlying data changes. The absence of
dynamically generated test data increases the likelihood of missing test cases, reducing the
effectiveness of the current test suite.

Missing Testing Layers

The following key areas lack automated testing:

• Feature Tests – There are no tests verifying that core user flows (e.g., logging in,
completing a purchase, or submitting a form) function as expected. This makes it
difficult to catch regressions in business-critical features.

• Integration Tests – No tests exist to validate interactions between different
components of the system, such as database queries, external API calls (e.g., Stripe
or Campaign Monitor), or authentication mechanisms. This increases the risk of
undetected failures when integrating with third-party services.

• API Tests – Since the application includes API interactions, the absence of API tests
means there is no validation of request/response handling, error handling, or
authentication mechanisms. This is a major concern, particularly for ensuring API
stability and correctness.

• Controller Tests – No tests are written to ensure that controllers handle requests
correctly, validate input properly, and return expected responses. This means that
even simple changes to a controller could introduce undetected bugs.

BHBIA Workshop Report 16

• Model Tests – Core business logic within models is not directly tested, meaning
errors in database interactions, relationships, or computed properties may go
unnoticed.

• Command Tests – Background jobs and command handlers are not tested, increasing
the risk that tasks such as email sending, reporting, or data imports may fail silently
in production.

Implications of Limited Testing

The lack of comprehensive testing introduces significant risks, including:

• Higher likelihood of regressions: Without automated tests, even minor code changes
could break existing functionality without being detected.

• Increased debugging time: Developers must rely on manual testing, which is time-
consuming and prone to human error.

• Reduced confidence in deployments: The absence of a structured test suite means
new releases carry a higher risk of introducing undetected bugs.

• Greater difficulty refactoring code: Without tests to validate expected behaviour,
refactoring becomes riskier and harder to execute safely.

4.7 Dependencies
A review of the system’s dependencies identified several critical issues related to outdated
and unsupported software versions. Many core technologies in use have reached end of life
(EOL), meaning they no longer receive security updates, performance improvements, or
official support. This introduces significant security, compatibility, and maintainability risks
for the application.

End-of-Life Core Technologies

Statamic v2 (EOL – August 2023)

The system is built on Statamic v2, which officially reached end of life in August 2023. As a
result:

• It no longer receives security patches or updates, making it increasingly vulnerable to
exploits.

• Newer versions of Laravel and PHP are not fully compatible with Statamic v2,
meaning any attempt to upgrade Laravel would likely require significant rework.

• Third-party add-ons and plugins for Statamic v2 are no longer actively maintained,
limiting future extensibility.

PHP 7.1 (EOL – December 2019)

The system runs on PHP 7.1, which reached end of life in December 2019. This poses severe
security risks, as it:

• No longer receives security updates, leaving the application exposed to
vulnerabilities.

• Is not supported by many modern frameworks and libraries, increasing the difficulty
of integrating new features.

• May become incompatible with future hosting environments, requiring urgent
upgrades to maintain platform stability.

BHBIA Workshop Report 17

MySQL 5.7 (EOL – October 2023)

The database system is powered by MySQL 5.7, which reached end of life in October 2023.
The primary risks associated with this include:

• No further security patches or performance optimizations.

• Potential incompatibility with future server environments, requiring migration to
MySQL 8.0 or an alternative database system.

• Lack of support for newer database features, which may limit performance and
functionality improvements.

These three end-of-life technologies alone present a critical risk to system security,
maintainability, and long-term viability.

Front-End Dependencies – Security Vulnerabilities

An audit of the front-end dependencies revealed 321 vulnerabilities across 993 packages,
with 55 Critical vulnerabilities and 172 High-severity vulnerabilities.

These vulnerabilities may include cross-site scripting (XSS), prototype pollution, insecure
dependencies, and outdated JavaScript libraries. Left unaddressed, these security flaws
could expose user data, compromise system integrity, and introduce exploitable attack
vectors.

CMS Dependencies – Security & Abandoned Packages

Within the CMS, a total of 44 security vulnerabilities were identified across 16 packages. In
addition to these security risks, 11 of these packages have been abandoned by their original
maintainers, meaning they:

• No longer receive updates or security patches.

• Have no direct replacement or upgrade path, making migration more complex.

• Could introduce compatibility issues with newer versions of PHP, Laravel, or
Statamic.

Implications of Outdated Dependencies

The continued reliance on end-of-life software and vulnerable dependencies introduces
significant security and operational risks, including:

• Increased Exposure to Security Threats: Without security patches, known
vulnerabilities remain exploitable, making the system more susceptible to data
breaches, malware injections, and unauthorized access.

• Limited Support & Maintenance Challenges: With no vendor support, resolving
issues and implementing improvements becomes more difficult and time-
consuming. Finding developers experienced in maintaining outdated technologies
may also become increasingly challenging.

• Compatibility Issues with Modern Technologies: Upgrading or integrating modern
libraries, third-party services, and APIs may not be feasible due to version

BHBIA Workshop Report 18

incompatibilities. Newer hosting environments may drop support for older PHP and
MySQL versions, forcing migration under urgent conditions.

• Regulatory & Compliance Risks: Many industry security standards (e.g., GDPR, PCI-
DSS) recommend or mandate the use of actively maintained software. The presence
of known security vulnerabilities in outdated packages may put the organization at
legal or compliance risk if a data breach occurs.

4.8 Database
The database implementation follows standard Eloquent ORM (Object-Relational Mapping)
practices and is generally structured and functional, however several inefficiencies and
potential security concerns have been identified. These include string-based queries,
inefficient query patterns, performance issues due to N+1 queries, and inconsistencies in
indexing strategies. Addressing these areas would likely improve database performance,
maintainability, and security.

Use of String-Based Queries

A number of database interactions rely on string-based raw SQL queries rather than
leveraging Eloquent’s built-in query builder. While this approach can sometimes provide
greater flexibility, it introduces several concerns:

• Maintainability Issues: Manually written SQL queries are harder to manage,
especially as the system evolves. Unlike Eloquent queries, string-based queries do
not benefit from Laravel’s automatic query optimizations and schema abstraction
layers.

• Security Risks: If string-based queries are not properly parameterized and escaped,
they increase the risk of SQL injection attacks. While Laravel provides built-in query
binding to prevent injection, improper usage of raw SQL can bypass these
protections.

• Inconsistent Query Structure: Some queries use Laravel’s query builder, while others
rely on raw SQL, creating inconsistencies in implementation across different areas of
the application.

N+1 Query Issues and Relationship Handling

Several instances of nested loops accessing relationships have been observed, which can
lead to N+1 query problems. This occurs when each iteration of a loop makes a new
database query instead of retrieving all related records in a single optimized query.

For example, if a query retrieves a list of users and then separately fetches each user’s
associated records (e.g., orders, memberships, or notifications) in a loop, it can result in
dozens or even hundreds of unnecessary queries. This significantly impacts database
performance, especially as data volume increases.

Use of Chunking for Large Data Queries

Chunking has been implemented in some but not all queries, particularly in areas such as
notifications and data exports. Chunking is a performance optimization technique that
processes large datasets in smaller batches, reducing memory usage and preventing
timeouts.

BHBIA Workshop Report 19

However, not all large queries are utilizing chunking, meaning that some operations could
be retrieving large datasets into memory at once, leading to performance degradation and
potential memory exhaustion.

4.9 Documentation
The documentation provided for the system is clear and well-structured, offering a high-
level overview of the application and its architecture. Key system components, hosting
details, and core user flows have been documented, aiding in the onboarding process for
new developers. However, there are significant gaps in code-level documentation and API
documentation, which could impact maintainability, debugging efficiency, and third-party
integration efforts.

Provided Documentation

The documentation package includes several key resources that offer a structured overview
of the system’s architecture and functionality:
Entity Relationship Diagram (ERD) – Provides a visual representation of the database
schema, illustrating table structures and relationships.
Architecture Diagram – Details the system’s overall design, hosting environment, and key
integrations, helping developers understand how different components interact.
Core User Flows – Outlines the primary user journeys within the system, offering insight into
how users navigate and interact with features.
Hosting & Infrastructure Documentation – Provides technical details on the hosting
environment, including server configurations, deployment processes, and dependencies.
Developer Onboarding Guide – Offers step-by-step instructions on setting up the
development environment and getting the system running.

These documents provide essential context for developers working on the system and are
valuable in ensuring that new team members can quickly onboard and understand the
system’s architecture.

Lack of Code-Level Documentation

While the high-level documentation is sufficient for understanding the overall system, the
codebase itself lacks inline documentation and explanatory comments. Inline comments
appear sporadically, and there is little explanation of complex business logic, making it
difficult for developers to understand the purpose of key functions and classes, identify
dependencies between components and quickly debug or modify existing logic without
extensive manual tracing.

Well-documented code is critical for ensuring long-term maintainability, especially in a
system with custom implementations and legacy components. Without proper
documentation, developers may need to spend significant time reverse-engineering
functionality, increasing the risk of unintended changes or errors.

BHBIA Workshop Report 20

4.10 Security
A preliminary security review of the system found no immediately exploitable vulnerabilities
in terms of unauthorized access or authentication bypasses. The application relies on
Laravel’s and Statamic’s built-in authorization mechanisms, which generally provide robust
access control. However, the security audit revealed several high and medium-risk
vulnerabilities that require attention.

Authorization & Access Control

The system relies heavily on Laravel and Statamic’s built-in security features, particularly for
authorization and access control. While key endpoints appear to be restricted appropriately,
there is minimal additional server-side validation beyond what the framework provides. This
means that access control is dependent on Laravel’s default mechanisms, with no additional
backend verification of authorization levels before executing critical actions. Administrator
endpoints should enforce additional backend validation, even if frontend role-based access
control (RBAC) is in place.

Although this is not an immediate security risk, best practices dictate that authorization
checks should always be enforced at the backend, particularly for sensitive operations.

Additionally, static assets within the Main Assets directory are publicly accessible without
authentication, meaning any file within that directory can be accessed directly via URL,
regardless of user privileges. This could lead to unintended data exposure if sensitive files
are mistakenly placed within this directory.

Security Audit & Identified Issues

A full security audit has not yet been conducted, but basic penetration testing and
vulnerability scans were performed to identify potential weaknesses. The following security
concerns have been detected, categorized by severity. Issues identified as Low or below are
not included.

Name Risk
Level

Number of
instances

Description Impact

Cross-Site Scripting
(XSS) - Reflected

High 1 The system echoes attacker-
supplied code into the browser
without proper sanitization,
allowing arbitrary JavaScript
execution within a user’s session.

If exploited, an attacker could steal
session cookies, redirect users to
malicious sites, or modify page
content.

SQL Injection High 12 A vulnerability was detected where
SQL queries are being executed
with unvalidated input, allowing a
modified query to execute on the
database.

If exploited, attackers could
manipulate database queries,
exfiltrate sensitive data, or delete
records.

Content Security
Policy (CSP) Header
Not Set

Medium 1306 The system lacks a Content Security
Policy (CSP) header, which is used
to restrict which sources can
execute scripts, load styles, and
embed media.

This increases the risk of Cross-Site
Scripting (XSS), Clickjacking, and
Data Injection attacks.

Missing Anti-
clickjacking Header

Medium 1108 The response does not protect
against 'ClickJacking' attacks. It
should include either Content-
Security-Policy with 'frame-
ancestors' directive or X-Frame-
Options.

This allows attackers to embed the
site in an iframe, potentially
tricking users into unintended
actions such as clicking buttons,
submitting forms, or exposing
sensitive information.

BHBIA Workshop Report 21

4.11 Administration Panel – Risk of Unrestricted Access
The administration panel allows all administrators to modify critical system settings,
including filesystem structure, license keys, and global formatting settings (Redactor
settings). Allowing unrestricted access to these settings increases the risk of accidental
misconfigurations, which could cause site-wide failures.

To prevent this, tiered admin roles should be introduced, ensuring that only super
administrators can modify critical settings, while content managers have restricted access.

4.12 Stripe Integration & Pricing Risks
There are potential risks in how pricing and fees are managed within the system. Although
access to the Stripe instance was not available for review, it appears that product pricing
and fees are controlled within the CMS rather than within Stripe’s own dashboard.

If pricing is hardcoded in the database, there is a risk that manual errors or outdated pricing
could affect live transactions. A more robust solution would be to integrate pricing directly
with Stripe and manage costs dynamically through its API to avoid discrepancies. This would
also allow the future use of Stripe’s built in pages for users to manage their payment
information and retrieve invoices for previous purchases.

BHBIA Workshop Report 22

5. Redevelopment Strategy
It is recommended that the application undergo a full rebuild rather than attempting to
refactor or patch the existing codebase. The current system presents significant technical
debt, security vulnerabilities, and long-term maintainability challenges due to outdated
dependencies, inefficient architecture, and a lack of flexibility in key areas. A rebuild will
allow the organization to modernize its infrastructure, improve system performance, and
streamline administrative workflows while maintaining all essential functionality.

The following considerations outline the key factors in the rebuild strategy, including data
migration, feature prioritization, payments handling, security improvements, and hosting
considerations.

5.1 Rebuild vs Refactoring
While refactoring could address some issues, the system’s reliance on outdated and
unsupported technologies introduces inherent risks. Additionally, critical security
vulnerabilities—including SQL injection risks, lack of modern authentication practices, and
missing security headers—further support the case for a fresh implementation using
modern frameworks and best practices.

A rebuild will:

• Eliminate technical debt by using a modern and supported technology stack that
ensures long-term maintainability.

• Improve maintainability and performance by replacing inefficient queries, fixing data
retrieval issues, and implementing better caching strategies.

• Enhance security by enforcing stronger authentication mechanisms, API protection,
and updated dependency management.

• Streamline workflows by removing unnecessary complexity from content
management and shifting financial logic into Stripe for automation.

A refactor would require extensive work to modernize the system while still dealing with
legacy constraints, making a full rebuild the more cost-effective and future-proof solution.

5.2 Data Migration Strategy
A critical component of the rebuild will be ensuring that essential data is preserved and
migrated efficiently. The following key questions must be addressed:

• What historical data must be retained?
o Member accounts, purchase history, certification records, and event

attendance should be migrated.
o Older, less relevant data (e.g., expired job board listings, archived content)

should be reviewed for potential exclusion.

• How will data be transformed?
o Existing database relationships may need restructuring to align with modern

best practices.

BHBIA Workshop Report 23

o Data should be cleaned to remove duplicate or inconsistent records before
migration.

• What approach will be used?
o A staging environment should be set up to test data migration before

launching the new system.
o Automated scripts should be created for migrating users, memberships,

events, and purchases from the old system to the new.

Proper planning will ensure a smooth transition with minimal disruption.

5.3 Feature Prioritization & Rationalization
The rebuilt system must support all critical business functions, but this presents an
opportunity to streamline content management and remove unnecessary complexity.

Key Features to Retain & Improve

• Membership Management – Ensure smooth registration, renewals, and access
control.

• Events & Training – Maintain the ability to list, book, and manage training and online
and in-person events.

• Payments & Subscriptions – Move all pricing logic into Stripe to simplify
administration.

• Reporting & Analytics – Improve the reporting system by making data exports more
flexible.

• Admin Panel Navigation – Redesign admin workflows to reduce time spent on
repetitive tasks.

• Authentication – Utilise a third-party Authentication provider to simplify
administration and ensure best practices

Features That Could Be Removed or Simplified

• CMS Flexibility for Certain Sections – Sections such as Event Descriptions, Training
Descriptions, and Award Content do not require full CMS flexibility. Instead,
templated structures with input fields should be used for consistency and ease of
use.

• Job Board – If underutilized, the job board could be reviewed for removal or
replaced with a more streamlined posting system.

Key Improvements in the Rebuild

• Implement structured content management where full CMS flexibility is not needed
to reduce maintenance overhead.

• Introduce bulk management tools for adding events, courses, and reports to reduce
administrative workload.

5.4 Payments & Financial Handling
Currently, financial logic (event fees, member fees, training fees) is stored within the
administration system, making it difficult to update, track, and manage payments efficiently.

BHBIA Workshop Report 24

To streamline this, all pricing and transaction management should be migrated to Stripe,
leveraging its built-in invoicing, subscription, and checkout pages. This will:

• Ensure consistency in pricing by storing fees directly in Stripe rather than in the
internal system.

• Reduce administrative overhead, as price adjustments and invoice generation can be
handled directly in Stripe.

• Improve security and compliance, as Stripe fully manages PCI compliance, removing
the need to store payment details internally.

The administration panel should dynamically pull pricing from Stripe, allowing adjustments
without requiring code changes.

5.5 Development & Implementation Strategy
• Conduct a separate, dedicated UX review phase to ensure requirements and user

journeys are fully defined before development begins.
• Employ phased, iterative delivery:

o Phase 1 (MVP): Core functionality (user journeys, essential payments, CMS
templates)

o Phase 2: Enhanced administrative automation and detailed reporting
features

o Phase 3: Additional “nice-to-have” features based on user feedback and
priorities

• Establish regular milestones and clearly defined deliverables at each stage, validated
by the Technical Consultant and stakeholders.

5.6 Testing & Launch
• Clearly define User Acceptance Testing (UAT) scenarios early in the project.
• Conduct rigorous testing of:

o Functional correctness (core user journeys and administrative workflows)
o Performance under expected peak conditions (membership renewals, event

bookings)
o Security and compliance checks (penetration testing, GDPR compliance)

• Plan and execute a structured launch approach, including communication to users,
clear rollback strategies, and post-launch support measures.

5.7 Post-launch & Continuous Improvement
Schedule regular review meetings post-launch to assess performance against initial
objectives, identify improvement areas, and plan further enhancements.

BHBIA Workshop Report 25

6. Recommendations

6.1 UX review
A dedicated UX review phase should precede the development phase. This approach
ensures clarity on user journeys, optimal site navigation, and improved overall user
experience. It will also help identify potential usability issues early, minimising costly
revisions later in the project. Ideally, this would be separate to the development phase, so
that costs can be re-adjusted based on feedback from the UX phase.

Clearly Defined User Journeys

Particular attention should be given to simplifying and enhancing the following key user
journeys:

Membership Registration & Renewal

• Simplify initial registration processes to reduce drop-off rates.

• Clearly communicate the benefits of membership and renewal procedures.

• Provide clear steps and feedback throughout the renewal process.

• Introduce automatic assignment to Group Membership via associated email domain,
with optional approval based on level of membership

Event & Training Booking

• Streamline the booking process to ensure minimal steps from discovery to
confirmation.

• Ensure seamless integration with external webinar links and provide clear, intuitive
event notifications (ICS calendar integration).

• Investigate the use of and integrating with third-party solutions to improve user
interaction as well as administration

Payments & Invoicing

• Ensure transparent communication during payment processes.

• Provide an intuitive and secure payment checkout experience, fully integrated with
Stripe or other payment provider.

• Clearly indicate payment statuses and provide easily accessible invoices and receipts
for the customer.

• Ensure that invoice chasing and delayed payment are handled automatically, and the
burden is significantly reduced on BHBIA staff.

User Interface & Accessibility Improvements

To enhance user experience and accessibility, the rebuild should address these specific
issues identified:

Form Design & Validation

• Ensure all forms have clearly associated labels to improve accessibility.

• Implement robust inline validation and clear error messaging to improve form
usability.

BHBIA Workshop Report 26

Layout Stability & Image Optimisation

• Prevent layout shifts by defining image and content dimensions explicitly.

• Optimise images (e.g., responsive images, WebP format, lazy loading) to improve
load times.

Navigation & Content Discoverability

• Revisit the main navigation structure to enhance user discoverability of content such
as Events, Training, and Members Directory.

• Simplify and clarify site navigation, particularly on mobile devices.

Accessibility Compliance

• Ensure compliance with accessibility standards (e.g., WCAG 2.1 guidelines).

• Address issues such as inconsistent heading structures and inadequate keyboard
navigation for dropdown menus and interactive elements.

6.2 Content, CMS & Administration

Structured CMS Templates

• Implement structured, predefined content templates for frequently used content
areas such as News, Events, Resources, and BOBI Awards.

• Reduce unnecessary complexity currently caused by overly flexible, unstructured
content pages, making it easier for administrators to manage content consistently.

• Templates should be designed so that there are multiple options for page designs,
that they are responsive and don’t need to be manually adjusted by an administrator
based on images or content.

Content Management Efficiency

• Adopt a clearly defined workflow for content creation, editing, and management to
enhance administrative efficiency.

• Ensure that content cannot be edited at the same time, to ensure data isn’t lost.

• Ensure that preview of content that isn’t live yet is correct.

Administrative Workflow Improvements

• Clearly define administrative roles and permissions, establishing tiered access (e.g.,
Super Admin vs. Content Admin) to prevent unintended changes to critical system
settings.

• Simplify admin workflows through bulk management capabilities, especially for
routine tasks such as adding events or updating training modules.

• Improve historical data visibility and reporting on administrative areas such as
payments, membership status, and subscription history.

Enhanced Reporting System

• Rebuild the reporting system to offer greater flexibility, eliminating the need to
manually create numerous templates for slight variations.

• Ensure reports can aggregate data from multiple database tables simultaneously,
improving ease of auditing and data accuracy.

BHBIA Workshop Report 27

• Introduce numerous pre-defined templates for regular reporting needs. These
should be defined by BHBIA, including the columns required. If regularly running
reports, then investigate automation of the reports.

Asset Management Improvements

• Transition to efficient asset storage and management (cloud-based or otherwise) to
address scalability issues currently posed by asset management via Version Control.

• Ensure that document and image management within the CMS is intuitive,
structured, and performant.

• Ensure assets are organised in the CMS and are reusable.
• Ensure that assets cannot be accessed if they are only accessible on private pages,

such as paid for events and training, or are explicitly for the use by the board.

SEO and Content Discoverability

• Enhance content management tools to support robust SEO features, including
metadata management, structured data markup, and optimised URLs.

• Implement proper caching strategies, leveraging a CDN for static assets to improve
site performance and user experience.

• Ensure that whatever Front-end framework is chosen, search engine crawlers can
access individual pages for indexing.

6.3 Technical Approach

Recommended Technical Stack

Based on the audit findings, the new system should be built on a modern, sustainable, and
scalable technology stack. Recommendations include

A modern CMS platform.
This can be Headless (i.e. not utilising the CMS’s own front-end) or not. Examples include
WordPress, Shopify or Contentful.

Modern Front-end Framework
Utilise React or Vue.js to create a performant, scalable, and responsive front-end. This
approach allows better separation of concerns between front-end content rendering and
backend administrative functions.

Utilisation of off-the-shelf components
Use third-party components for Authentication and Payment integration, as well as
investigating use of a third-party Learning Management System (LMS) for the creation and
implementation of Online Training, as well as an Event System for Event Management. Need
to ensure that they are integrated well and are of a benefit to the user, rather than just
reducing development and support cost.

Centralised Administration

• Establish a clear separation between administrative functions and the user-facing
website by using a dedicated admin subdomain (e.g., admin.bhbia.org.uk).

• Ensure admin access is tiered and secure, following the principle of least privilege.

BHBIA Workshop Report 28

Security Enhancements

• Implement robust authentication and authorisation measures (e.g., Multi-Factor
Authentication, role-based access control).

• Require strict input validation and secure handling of API endpoints.
• Ensure compliance with modern web security standards (CSP headers, protection

against XSS, and SQL injection prevention).

Hosting & Infrastructure Considerations

• Infrastructure should support auto-scaling during high-demand periods, ensuring
optimal site performance, whilst balancing cost implications.

• Include a clear, automated CI/CD pipeline with rollback capabilities.
• Ensure client retains ownership and direct administrative control over hosting to

provide flexibility in supplier management.

Reporting

• Reporting by an administrator should be flexible enough that they can retrieve the
data they need, without being too complicated that development becomes an issue.

• First rely on templates, and increase flexibility based on requirements
• Ensure that historical data is retained and that reporting on the historical audit trail

of changes in membership subscriptions, payments and other specific data is
possible.

Data Migration Strategy

A careful migration strategy will be critical. The approach should include:
• Identification and prioritisation of essential data

o User profiles and membership history
o Event attendance and training completion history
o Historical financial transaction records

• Pre-migration data cleansing to remove inconsistencies and duplicates, and archived
data that doesn’t need to be retained.

• Use of a staging environment to perform dry-run migrations for validation.
• Development of automated scripts to facilitate a reliable migration process.

6.4 Payment Integration & Financial Handling
• Centralise all payment processes within Stripe or other payment provider, ensuring a

single, unified platform for payment management.
• Utilise Stripe’s built-in invoicing and subscription management features.
• Automate debtor management, including automated reminders for overdue

payments.
• Integrate payment exports directly with accounting software (Sage) to reduce

manual reconciliation.
• Ensure clear, user-friendly access for users to their invoices and payment history.

6.5 User Management
• Simplify the member registration process to reduce user friction and abandonment.

BHBIA Workshop Report 29

• Improve management capabilities for organisation administrators, allowing easy
management and reporting of members.

• Facilitate streamlined user movement between companies, maintaining historical
records clearly and accurately.

• Enhance visibility of membership history, including event attendance, training
completion, and financial transactions.

• Clearly define user access rights and administrative roles, simplifying overall user
administration.

6.6 Security & Compliance
• Implement OWASP Top 10 Security mechanisms, ensuring a secure application.
• Consider advanced authentication mechanisms such as Multi-Factor Authentication

(MFA) for administrative users.
• Review integrations, especially with email marketing (e.g., Campaign Monitor), to

ensure GDPR compliance.
• The website should be subject to a Penetration Test before going live, which should

be included in the cost quoted by the supplier.

6.7 Campaign and Marketing
• Identify a way of segregating users and what marketing and campaign’s need to be

sent. These should be set up in Campaign Monitor or other Campaign email system.
• Ensure that you have complete access to the platform rather than having to utilise it

through the administration panel
• Be careful about how flexible this is. Allow users to select their own preferences,

such as Areas of Interest, Company types, Event types etc. Allow a user to consent to
what type of marketing they would like and allow for them to unsubscribe from one
type without affecting others.

6.8 Deployment and Go Live
• Ensure that deadlines are not structured around recertification timelines, and that

Go Live should be aimed for a short while after recertification has happened, to
reduce issues.

• A Go Live plan should be constructed to ensure a smooth transition, and a hyper care
support agreement in place for the first week of initial Go Live.

• Design an iterative release strategy so that the minimal viable product (MVP) is
released first (which may include a regression in features initially), with continually
releases after that. Try and avoid a full overhaul with many moving parts, however
this may be unavoidable.

BHBIA Workshop Report 30

7. Risks & Mitigations

7.1 Data Migration Complexity and Integrity Issues
Description
Migrating legacy data (membership details, payment history, training records, and event
data) may lead to data integrity issues or loss.

Impact
Data inaccuracies or loss could negatively impact user trust, financial reporting, and
historical record management.

Mitigation

• Prioritise and cleanse data thoroughly before migration.
• Employ scripted migrations with validation processes in staging environments.
• Conduct comprehensive User Acceptance Testing (UAT) to validate data integrity.

7.2 Inadequate Security Measures
Description
Previous system vulnerabilities (SQL injection, XSS, outdated components) may persist
without stringent oversight and clear security standards.

Impact
Compromised user data, reputational damage, regulatory non-compliance, and potential
financial penalties.

Mitigation

• Enforce secure coding standards and regular code reviews.
• Require comprehensive security testing from suppliers, including penetration

testing.
• Clearly outline security and compliance requirements.

7.3 Overly Flexible Requirements
Description
Excessive flexibility in content and administrative areas has previously resulted in
complexity, high maintenance costs, and administrative inefficiency.

Impact
Continued complexity, increased maintenance overhead, difficulty managing content
consistently.

Mitigation

• Adopt structured CMS templates for repetitive content.
• Clearly specify areas that require flexibility versus those that can remain templated

or standardised.
• Maintain strict governance around content structure decisions.

BHBIA Workshop Report 31

7.4 Payment Integration and Financial Automation Challenges
Description
Fragmented financial management, manual debtor management, and limited integration
previously led to inefficiencies.

Impact
Continued manual processes, increased administrative overhead, and potential financial
inaccuracies.

Mitigation

• Clearly specify integration requirements with Stripe and accounting software (Sage).
• Implement robust automation for debtor management, invoicing, and financial

reporting.
• Validate integrations extensively before launch.

7.5 Performance Issues During Peak Periods
Description
Current website faces severe performance degradation during membership renewal and
event booking peaks.

Impact
Poor user experience, lost revenue opportunities, and reduced trust in system reliability.

Mitigation

• Clearly define performance benchmarks and expectations.
• Select scalable hosting infrastructure with built-in performance monitoring and

autoscaling capabilities.
• Conduct thorough load testing and performance tuning prior to deployment.
• Ensure that the admin site is separate to the Main site

BHBIA Workshop Report 32

8. Appendix

8.1 Security Audit report

BHBIA Workshop Report 33

8.2 Workshop Whiteboard Outputs

Current Features

New Features

BHBIA Workshop Report 34

User Stories

	Table of Contents
	1. Executive Summary
	1.1 Overview
	1.2 Key Issues Identified
	1.3 Scope of the Audit
	1.4 Recommendation

	2. High-Level Business Objectives
	3. Existing System
	3.1 Description
	3.2 Technical Stack
	3.3 Main Sections & Features
	Administration & CMS
	CMS-Driven Pages
	Online Training
	Events
	BOBI Awards
	Job Board
	Members Directory
	Member Profile

	4. Technical Audit Findings
	4.1 Code Quality
	4.2 Reporting System
	4.3 Error Handling & Logging
	4.4 Architecture
	Asynchronous Processing with Command Handlers
	External Payment Handling via Stripe
	Containerization with Docker

	4.5 Performance
	General Performance Issues
	Image Optimization & Layout Stability
	Caching Strategy for Static Content
	Accessibility & Usability Considerations

	4.6 Testing
	Current State of Testing
	Missing Testing Layers
	Implications of Limited Testing

	4.7 Dependencies
	End-of-Life Core Technologies
	Statamic v2 (EOL – August 2023)
	PHP 7.1 (EOL – December 2019)
	MySQL 5.7 (EOL – October 2023)

	Front-End Dependencies – Security Vulnerabilities
	CMS Dependencies – Security & Abandoned Packages
	Implications of Outdated Dependencies

	4.8 Database
	Use of String-Based Queries
	N+1 Query Issues and Relationship Handling
	Use of Chunking for Large Data Queries

	4.9 Documentation
	Provided Documentation
	Lack of Code-Level Documentation

	4.10 Security
	Authorization & Access Control
	Security Audit & Identified Issues

	4.11 Administration Panel – Risk of Unrestricted Access
	4.12 Stripe Integration & Pricing Risks

	5. Redevelopment Strategy
	5.1 Rebuild vs Refactoring
	5.2 Data Migration Strategy
	5.3 Feature Prioritization & Rationalization
	5.4 Payments & Financial Handling
	5.5 Development & Implementation Strategy
	5.6 Testing & Launch
	5.7 Post-launch & Continuous Improvement

	6. Recommendations
	6.1 UX review
	Clearly Defined User Journeys
	User Interface & Accessibility Improvements

	6.2 Content, CMS & Administration
	Structured CMS Templates
	Content Management Efficiency
	Administrative Workflow Improvements
	Enhanced Reporting System
	Asset Management Improvements
	SEO and Content Discoverability

	6.3 Technical Approach
	Recommended Technical Stack
	Centralised Administration
	Security Enhancements
	Hosting & Infrastructure Considerations
	Reporting
	Data Migration Strategy

	6.4 Payment Integration & Financial Handling
	6.5 User Management
	6.6 Security & Compliance
	6.7 Campaign and Marketing
	6.8 Deployment and Go Live

	7. Risks & Mitigations
	7.1 Data Migration Complexity and Integrity Issues
	7.2 Inadequate Security Measures
	7.3 Overly Flexible Requirements
	7.4 Payment Integration and Financial Automation Challenges
	7.5 Performance Issues During Peak Periods

	8. Appendix
	8.1 Security Audit report
	8.2 Workshop Whiteboard Outputs
	Current Features
	New Features
	User Stories

